quarta-feira, 28 de outubro de 2020

 MOMENTUM = TRANSFORMAÇÕES = INTERAÇÕES = ENERGIA X SDCTIE GRACELI.



 MOVIMENTO NOS SISTEMAS DE GRACELI.

MOVIMENTO ESTÁ RELACIONADO COM TRANSFORMAÇÕES E OU  SDCTIE GRACELI.


OU SEJA, AS TRANSFORMAÇÕES PODEM OU NÃO NECESSITAR DE ENERGIA, POIS, AS TRANSFORMAÇÕES SÃO NATURAIS, OU SEJA, É NATURAL E É UMA ESSÊNCIA DA NATUREZA, DE ESTAR EM TRANSFORMAÇÃO, LOGO, DE ESTAR TAMBÉM EM MOVIMENTO, ONDE TAMBÉM MOVIMENTO E TRANSFORMAÇÕES SÃO UMA MESMA COISA, E TAMBÉM NÃO O SÃO AO MESMO TEMPO.


OU SEJA, NÃO ESTÁ RELACIONADO COM INÉRCIA DOS CORPOS, OU FORÇAS , OU MESMO COM ENERGIAS, OU GEOMETRICIDADE DO ESPAÇO E TEMPO.


UMA PART´CILA OU ESTRUTURA METÁLICA, OU CORRENTE MARÍTIMA, OU OUTRAS FORMAS DE TRANSFORMAÇÕES SÃO E PRODUZEM MOVIMENTO, E É UMA ESS~ENCIA DA NATUREZA DE SER E ESTAR EM TRANSFORMAÇÃO.

 




É IMPORTANTE RESSALTAR QUE O SDCTIE GRACELI  É UM SISTEMA QUE SE ENCAIXA EM TEORIAS DO PRESENTE, PASSADO E SE ENCAIXARÁ NAS DO FUTURO.

TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]

x
TODA E QUALQUER FORMA DE FUNÇÃO E EQUAÇÃO EM:


Tunelamento quântico

O tunelamento quântico pode ser modelado pelo uso da formulação de integral de caminho para determinar a ação da trajetória através de uma barreira de potencial. Usando a aproximação WKB, o a taxa de tunelamento () pode ser determinado por:


FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

sendo  a ação efetiva e um fator multiplicativo. Esta forma é especialmente útil em um sistema dissipativo, onde o sistema e o ambiente deve ser modelada juntos. Usando a equação de Langevin para o modelo de movimento Browniano, o caminho de formação integral que pode ser usado para determinar uma ação eficaz e pré-exponencial modelo para ver o efeito da dissipação no tunelamento .[11] A partir deste modelo, taxas de tunelamento de sistemas macroscópicos podem ser previstas em temperaturas finitas.





formulação de Feynman da mecânica quântica ou formulação de integrais de caminho da mecânica quântica é uma descrição da teoria quântica que generaliza a ação da mecânica clássica. Ela substitui a noção clássica de uma única trajetória para um sistema por uma soma, ou integral funcional, por meio de uma infinidade de trajetórias possíveis para calcular a amplitude quântica.

A ideia básica da formulação de integral de caminho é originária de Norbert Wiener, que apresentou o processo de Wiener para a solucionar problemas de difusão e movimento Browniano.[1] Esta idéia foi estendida para o uso do Lagrangiana na mecânica quântica por P. A. M. Dirac em seu artigo de 1933[2] . O método completo foi desenvolvido em 1948 por Richard Feynman. Algumas preliminares foram trabalhados anteriormente, no curso de sua tese de doutorado no trabalho de John Archibald Wheeler. A motivação original surgiu da aspiração  de obter uma formulação da mecânica quântica para a teoria de teoria de ação à distância de Wheeler e Feynman usando uma Lagrangeana (ao invés de um Hamiltoniano) como ponto de partida.

Esta formulação tem se provado fundamental para o desenvolvimento posterior da física teórica, por ser manifestamente simétrica entre o tempo e o espaço. Ao contrário dos métodos anteriores, a formulação de integral de caminho-integral permite facilmente a mudança de coordenadas entre descrições canônicas diferentes do mesmo sistema quântico.

A formulação de integral de caminho também relaciona processos quânticos e estocásticos, fornecendo a base para a grande síntese, na década de 1970 que unificou a teoria quântica de campos com a teoria de campos estatísticos de campo flutuante perto de uma transição de fase de segunda ordem. A equação de Schrödinger é uma equação de difusão com uma constante de difusão imaginária, sendo a integral de caminho uma continuação analítica do método para a soma de todos as possíveis caminhadas aleatórias. Por esta razão integrais de caminho foram utilizados no estudo de difusão e movimento Browniano pouco antes de serem introduzidos na mecânica quântica.[3]

Estes são apenas três dos caminhos que contribuem para amplitude quântica de uma partícula movendo-se do ponto A em tempo t0 para o ponto B em  t1.


 Princípio da ação quântica


Na mecânica quântica, assim como na mecânica clássica, o Hamiltoniano é o gerador de translações temporais. Isto significa que o estado em um tempo posterior difere do estado atual pela atuação do operador Hamiltoniano (multiplicado pelo negativo unidade imaginária, −i). Para os estados com uma determinada energia, esta é uma instrução de relação de De Broglie entre a freqüência e a energia, e a relação geral é consistente com o que e o princípio da superposição.

No entanto, na mecânica clássica o Hamiltoniano é derivado a partir de um Lagrangeana,  que é uma quantidade mais fundamental em relação à relatividade especial. O Hamiltoniano indica como o movimento se desenvolve no tempo, mas o tempo é diferente em diferentes sistemas de referência. Assim, o Hamiltoniano é diferente em referenciais diferentes e este tipo de simetria não é aparente na formulação original da mecânica quântica.

O hamiltoniano é uma função da posição e momento no tempo t, determinando a posição e o momento no tempo (t+ε). A Lagrangiana é uma função das posição em t e (t+ε) (para um intervalo de tempo infinitesimal, a velocidade é medida é a velicidade instantânea, tornando a Lagrangeana como função da posição e da velocidade). A relação entre os dois é por uma transformação de Legendre e a condição que determina as equações de movimento (ou equações de Euler–Lagrange) é a extremização da ação.

Na mecânica quântica, uma transformação de Legendre é difícil de interpretar uma vez que o movimento não é dado por uma trajetória definida. Na mecânica clássica, a discretização temporal da transformação de Legendre torna-se:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde a derivada parcial com relação a mantém q(t + ε) constante. A inversa da transformação de Legendre é:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


tomando q fixo.

Na mecânica quântica, um estado qualquer é uma superposição de estados independentes, com diferentes valores de q, ou diferentes valores de p, sendo que o momento e a posição  (p e q) podem ser interpretadas como operadores que não comutam. O operador p é definitivo em estados onde q são indeterminados. Considere dois estados separados no tempo. A atuação do operador correspondente à Lagrangiana:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se a multiplicação implícita na fórmula são reinterpretados como multiplicação de matrizes, o primeiro fator é:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Se esse também é interpretado como uma multiplicação de matrizes, a soma sobre todos os estados integra todos q(t), levando a transformada de Fourier em q(t), mudando a base para p(t). Isto é a ação sobre o espaço de Hilbert – mudar de base para p no tempo t.

Em seguida, tem-se:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que é uma  evolução infinitesimal para o futuro.

Finalmente, o último fator, nessa interpretação, é:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que é uma mudança de base de volta para q no tempo (t+ε).

Isto não é diferente do operador de evolução temporal: o fator H contém toda informação da dinâmica, avançando o estado no tempo. A primeira e a última parte são as transformadas de Fourier para a mudança na base pura de q a partir de uma base intermediária p. 

De forma equivalente, pode-se dizer que: uma vez que o Hamiltoniano é naturalmente uma função de p e q, exponenciando estas quantidades  e realizando uma mudança de base de p para q em cada passo permite expressar o elemento da matriz de H como uma função simples ao longo de cada caminho. Esta função é o análogo quântico da ação clássica. Esta observação é feita por Paul Dirac.

Dirac observou ainda que se pudesse, o quadrado do tempo-a evolução do operador no S representação:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e isso é o operador de evolução temporal entre o tempo t e o tempo t + 2ε. Enquanto que na representação H a quantidade que está sendo somada nos estados intermediários é um elemento de matriz obscuro, na representação S esta é reinterpretado como uma quantidade associada ao caminho. No limite que leva um grande poder de esse operador, reconstrói-se a evolução quântica completa entre dois estados sendo o estada mais antigo com valor fixo q(0) a o estado mais recente com valor q(t). O resultado é uma soma sobre os caminhos com uma fase que é a ação quântica. Crucialmente, Dirac identificada  neste papel, a profundidade da mecânica quântica razão do princípio da mínima ação de controlar o limite clássico.





The Feynman–Kac formula named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947 when Kac and Feynman were both on Cornell faculty, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions.[1] The Feynman–Kac formula resulted, which proves rigorously the real case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still unproven.[citation needed]

It offers a method of solving certain partial differential equations by simulating random paths of a stochastic process. Conversely, an important class of expectations of random processes can be computed by deterministic methods.


Theorem[edit]

Consider the partial differential equation

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


defined for all  and , subject to the terminal condition

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


where μ, σ, ψ, Vf are known functions, T is a parameter and 

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


  is the unknown. Then the Feynman–Kac formula tells us that the solution can be written as a conditional expectation

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


under the probability measure Q such that X is an Itô process driven by the equation

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


with WQ(t) is a Wiener process (also called Brownian motion) under Q, and the initial condition for X(t) is X(t) = x.

Proof[edit]

A proof that the above formula is a solution of the differential equation is long, difficult and not presented here. It is however reasonably straightforward to show that, if a solution exists, it must have the above form. The proof of that lesser result is as follows.

Let u(xt) be the solution to the above partial differential equation. Applying the product rule for Itô processes to the process

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


one gets

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Since

the third term is  and can be dropped. We also have that

Applying Itô's lemma to , it follows that


X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


The first term contains, in parentheses, the above partial differential equation and is therefore zero. What remains is

Integrating this equation from t to T, one concludes that

Upon taking expectations, conditioned on Xt = x, and observing that the right side is an Itô integral, which has expectation zero[2], it follows that

The desired result is obtained by observing that

and finally

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Remarks[edit]

  • The proof above that a solution must have the given form is essentially that of [3] with modifications to account for .
  • The expectation formula above is also valid for N-dimensional Itô diffusions. The corresponding partial differential equation for  becomes:[4]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


where,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


i.e. , where  denotes the transpose of .
  • This expectation can then be approximated using Monte Carlo or quasi-Monte Carlo methods.
  • When originally published by Kac in 1949,[5] the Feynman–Kac formula was presented as a formula for determining the distribution of certain Wiener functionals. Suppose we wish to find the expected value of the function
in the case where x(τ) is some realization of a diffusion process starting at x(0) = 0. The Feynman–Kac formula says that this expectation is equivalent to the integral of a solution to a diffusion equation. Specifically, under the conditions that ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


where w(x, 0) = δ(x) and
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


The Feynman–Kac formula can also be interpreted as a method for evaluating functional integrals of a certain form. If
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


where the integral is taken over all random walks, then
where w(xt) is a solution to the parabolic partial differential equation
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


with initial condition w(x, 0) = f(x).






In probability theory, the Girsanov theorem (named after Igor Vladimirovich Girsanov) describes how the dynamics of stochastic processes change when the original measure is changed to an equivalent probability measure.[1]:607 The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument (such as a share price or interest rate) will take a particular value or values, to the risk-neutral measure which is a very useful tool for pricing derivatives on the underlying instrument.


History[edit]

Results of this type were first proved by Cameron–Martin in the 1940s and by Girsanov in 1960.[2] They have been subsequently extended to more general classes of process culminating in the general form of Lenglart (1977).[3]

Significance[edit]

Girsanov's theorem is important in the general theory of stochastic processes since it enables the key result that if Q is an absolutely continuous measure with respect to P then every P-semimartingale is a Q-semimartingale.

Statement[edit]

We state the theorem first for the special case when the underlying stochastic process is a Wiener process. This special case is sufficient for risk-neutral pricing in the Black–Scholes model and in many other models (for example, all continuous models).

Let  be a Wiener process on the Wiener probability space . Let  be a measurable process adapted to the natural filtration of the Wiener process  with .

Define the Doléans-Dade exponential  of X with respect to W

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


where  is the quadratic variation of . If  is a strictly positive martingale, a probability measure Q can be defined on  such that we have Radon–Nikodym derivative

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Then for each t the measure Q restricted to the unaugmented sigma fields  is equivalent to P restricted to . Furthermore, if Y is a local martingale under P, then the process

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

is a Q local martingale on the filtered probability space .

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Corollary[edit]

If X is a continuous process and W is Brownian motion under measure P then

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


is Brownian motion under Q.

The fact that  is continuous is trivial; by Girsanov's theorem it is a Q local martingale, and by computing the quadratic variation

it follows by Lévy's characterization of Brownian motion that this is a Q Brownian motion.

Comments[edit]

In many common applications, the process X is defined by

If X is of this form, then a sufficient condition for  to be a martingale is Novikov's condition, which requires that

The stochastic exponential  is the process Z, which solves the stochastic differential equation

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


The measure Q constructed above is not equivalent to P on , as this would only be the case if the Radon–Nikodym derivative were a uniformly integrable martingale, which the exponential martingale described above is not (for ).