É IMPORTANTE RESSALTAR QUE O SDCTIE GRACELI É UM SISTEMA QUE SE ENCAIXA EM TEORIAS DO PRESENTE, PASSADO E SE ENCAIXARÁ NAS DO FUTURO.
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll D
X [ESTADO QUÂNTICO]
xTODA E QUALQUER FORMA DE FUNÇÃO E EQUAÇÃO EM:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Processo de Cauchy
Em teoria da probabilidade, um processo de Cauchy é um tipo de processo estocástico. Há formas simétricas e assimétricas do processo de Cauchy.[1] O termo "processo de Cauchy" não especificado é frequentemente usado para fazer referência ao processo de Cauchy simétrico[2]
O processo de Cauchy tem certas propriedades:
Em teoria da probabilidade, um processo de Cauchy é um tipo de processo estocástico. Há formas simétricas e assimétricas do processo de Cauchy.[1] O termo "processo de Cauchy" não especificado é frequentemente usado para fazer referência ao processo de Cauchy simétrico[2]
O processo de Cauchy tem certas propriedades:
Processo de Cauchy simétrico
O processo de Cauchy simétrico pode ser descrito por um movimento browniano ou processo de Wiener sujeito ao subordinador de Lévy.[7] O subordinador de Lévy é um processo associado a uma distribuição de Lévy, tendo parâmetro de localização e parâmetro de escala .[7] A distribuição de Lévy é um caso especial de distribuição gama inversa. Então, usando para representar o processo de Cauchy e para representar o subordinador de Lévy, o processo de Cauchy simétrico pode ser descrito como:
- x
O processo de Cauchy simétrico pode ser descrito por um movimento browniano ou processo de Wiener sujeito ao subordinador de Lévy.[7] O subordinador de Lévy é um processo associado a uma distribuição de Lévy, tendo parâmetro de localização e parâmetro de escala .[7] A distribuição de Lévy é um caso especial de distribuição gama inversa. Então, usando para representar o processo de Cauchy e para representar o subordinador de Lévy, o processo de Cauchy simétrico pode ser descrito como:
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A distribuição de Lévy é a probabilidade do primeiro tempo de chegada para um movimento browniano. Logo, o processo de Cauchy é na essência o resultado de dois processos de movimento browniano independentes.[7]
A representação de Lévy-Khintchine para o processo de Cauchy simétrico é um triplo com deriva zero e difusão zero, o que resulta em um triplo de Lévy-Khintchine de , em que .[8]
x
A distribuição de Lévy é a probabilidade do primeiro tempo de chegada para um movimento browniano. Logo, o processo de Cauchy é na essência o resultado de dois processos de movimento browniano independentes.[7]
A representação de Lévy-Khintchine para o processo de Cauchy simétrico é um triplo com deriva zero e difusão zero, o que resulta em um triplo de Lévy-Khintchine de , em que .[8]
x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A função característica marginal do processo de Cauchy simétrico tem a forma:[1][8]
- x
A função característica marginal do processo de Cauchy simétrico tem a forma:[1][8]
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A distribuição de probabilidade marginal do processo de Cauchy simétrico é a distribuição de Cauchy cuja densidade é[8][9]
- x
A distribuição de probabilidade marginal do processo de Cauchy simétrico é a distribuição de Cauchy cuja densidade é[8][9]
- x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Processo de Cauchy assimétrico
O processo de Cauchy assimétrico é definido nos termos de um parâmetro . Aqui, é o parâmetro de obliquidade e seu valor absoluto deve ser menor ou igual a .[1] No caso em que , o processo é considerado um processo de Cauchy completamente assimétrico. [1]
O triplo de Lévy-Khintchine tem a forma , em que , em que
x
O processo de Cauchy assimétrico é definido nos termos de um parâmetro . Aqui, é o parâmetro de obliquidade e seu valor absoluto deve ser menor ou igual a .[1] No caso em que , o processo é considerado um processo de Cauchy completamente assimétrico. [1]
O triplo de Lévy-Khintchine tem a forma , em que , em que
x
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A distribuição de probabilidade marginal do processo de Cauchy é uma distribuição estável com índice de estabilidade igual a .
A distribuição de probabilidade marginal do processo de Cauchy é uma distribuição estável com índice de estabilidade igual a .
Divisibilidade infinita
A distribuição de um processo Lévy tem a propriedade de [[divisibilidade infinita]: dado qualquer número inteiro "n", a lei relativa a um processo Lévy ao longo do tempo pode ser representada como a lei de "n variáveis randômica independentes", processo no tempo "t" pode ser representado como a lei de "n" variáveis aleatórias independentes, que são precisamente os incrementos do processo Lévy mais intervalos de tempo de comprimento t/n, que são independentes e identicamente distribuídos por hipótese. Por outro lado, para cada distribuição de probabilidade infinitamente divisível , existe um processo Lévy de tal modo que a lei de é dada por um .
A distribuição de um processo Lévy tem a propriedade de [[divisibilidade infinita]: dado qualquer número inteiro "n", a lei relativa a um processo Lévy ao longo do tempo pode ser representada como a lei de "n variáveis randômica independentes", processo no tempo "t" pode ser representado como a lei de "n" variáveis aleatórias independentes, que são precisamente os incrementos do processo Lévy mais intervalos de tempo de comprimento t/n, que são independentes e identicamente distribuídos por hipótese. Por outro lado, para cada distribuição de probabilidade infinitamente divisível , existe um processo Lévy de tal modo que a lei de é dada por um .
Momentos
Em qualquer processo Lévy com momentos finitos, o momento nth , é uma função polinomial de t; estas funções satisfazer uma identidade binomial:
Em qualquer processo Lévy com momentos finitos, o momento nth , é uma função polinomial de t; estas funções satisfazer uma identidade binomial:
Representação Lévy–Khintchine
A distribuição de um processo Lévy é caracterizada por sua função característica, que por sua vez é dada pela fórmula Lévy–Khintchine (que é geral para todas as distribuições infinitamente divisíveis):[1] Se for um processo Lévy, então sua função característica será dada por
na qual , , será a função indicadora e será a medida sigma-finite chamada de medida Lévy de , o que satisfaz a propriedade
Um processo Lévy pode conter três componentes independentes: um desvio linear, um movimento browniano e uma superposição de processos de Poisson (centralizados) independentes, com diferentes tamanhos de salto; representa a taxa de chegada (intensidade) do processo de Poisson, com salto de tamanho . Estes três componentes, e, assim, a representação Lévy–Khintchine, são totalmente determinados pelo trio Lévy–Khintchine . Especificamente, o único (não-determinístico) processo de Lévy contínuo é um movimento browniano com deriva.
A distribuição de um processo Lévy é caracterizada por sua função característica, que por sua vez é dada pela fórmula Lévy–Khintchine (que é geral para todas as distribuições infinitamente divisíveis):[1] Se for um processo Lévy, então sua função característica será dada por
na qual , , será a função indicadora e será a medida sigma-finite chamada de medida Lévy de , o que satisfaz a propriedade
Um processo Lévy pode conter três componentes independentes: um desvio linear, um movimento browniano e uma superposição de processos de Poisson (centralizados) independentes, com diferentes tamanhos de salto; representa a taxa de chegada (intensidade) do processo de Poisson, com salto de tamanho . Estes três componentes, e, assim, a representação Lévy–Khintchine, são totalmente determinados pelo trio Lévy–Khintchine . Especificamente, o único (não-determinístico) processo de Lévy contínuo é um movimento browniano com deriva.
Nenhum comentário:
Postar um comentário